
Marius Watz software artist, lecturer

mariuswatz.com
marius@mariuswatz.com
oslo / new york

work mariuswatz.com
blog generatorx.no
partner randomnumber.nu

--

twitter twitter.com/mariuswatz
flickr flickr.com/photos/watz

Closed systems: Generative art and Software Abstraction

•	 System:		“1.	A	group	of	interacting,	interrelated,	or	interdependent	elements	forming	a	complex	
whole.”

•	 Closed	system:	“An	isolated	system	having	no	interaction	with	an	environment	[...]		a	SYSTEM	
whose	BEHAVIOR	is	entirely	explainable	from	within,	a	system	without	INPUT.”	

void setup();
The	notion	of	generative	systems,	where	formal	constructs	are	described	in	terms	of	parametric	processes	
executed	autonomously	of	their	author	,	has	recently	gained	popularity	in	art	and	design.	Conceptually	
these	systems	provide	a	computational	model	of	creativity,	combining	principles	of	unpredictability	with	
the	purity	of	logic.	As	Constructivism	and	Futurism	attempted	to	invoke	the	possibility	of	a	world	view	
based	on	industrial	processes,	so	generative	art	presents	us	with	a	Weltanschauung	of	computation.	
	 Forms	produced	by	generative	systems	often	take	on	a	complex	nature,	exploiting	principles	of	emer-
gence	to	produce	structures	that	could	not	be	made	by	human	hands.	Inspiration	taken	from	processes	
found	in	nature	is	common,	with	the	tension	between	organic	and	mechanical	forms	ever-present.	A	
common	challenge	in	computational	aesthetics	is	the	simulation	of	organic	behavior	and	spontaneous	
irregularities,	phenomena	that	appear	in	nature	without	prompting	but	which	can	only	be	replicated	by	
computers	with	the	explicit	encoding	of	such	behavior.
	 On	a	more	pragmatic	level,	generativity	is	a	useful	strategy	to	harness	the	power	of	the	computer,	per-
forming	rote	tasks	and	crunching	numbers.	By	using	parametric	processes	to	produce	an	infinite	series	of	
possible	outcomes,	the	author	is	allowed	to	take	the	privileged	position	of	harvesting	the	most	successful	
results.	Most	generative	work	is	marked	by	a	tendency	towards	formal	complexity	made	possible	by	hav-
ing	software	filling	in	the	details.	The	difference	between	having	10	and	10	thousand	particles	interacting	
is	a	simple	adjustment	of	parameters	and	allowing	for	additional	computing	time.	Increases	in	processing	
power	is	certainly	a	factor,	allowing	ever	more	complex	computations	to	be	used	even	for	realtime	appli-
cations.
	 This	is	not	to	say	that	the	use	of	parametric	systems	is	trivial	or	simply	a	matter	of	powerful	hardware.	
The	process	of	abstracting	aesthetic	processes	into	executable	computer	code	requires	formal	stringency	
and	a	talent	for	reverse-engineering	a	desired	result	in	order	to	identify	its	causal	elements.	Every	aspect	
of	the	system	must	be	explicitly	described,	including	details	that	might	seem	insignificant	when	consid-
ered	individually.	When	considered	as	a	whole,	however,	these	series	of	decisions	become	the	very	body	
of	the	work.	Furthermore,	even	the	most	experienced	programmer	will	encounter	unexpected	results	in	
the	process	of	designing	a	process,	whether	as	byproducts	of	errors	in	the	code	or	tendencies	given	by	the	
algorithms	used.	Programming	errors	can	lead	to	serendipitous	discoveries,	and	one	does	well	to	embrace	
one’s	mistakes.
	 A	piece	of	software	can	be	written	in	a	dozen	different	ways,	each	with	subtly	different	biases.	One	
strategy	might	yield	stable	and	predictable	behavior	that	falls	just	short	of	being	aesthetically	interesting.	
Another	might	lead	to	an	unstable	system	that	produces	frequent	crashes	but	also	occasional	displays	of	

genius.	Despite	the	essential	immateriality	of	computer	code	algorithms	nevertheless	display	material	
properties,	often	showing	a	specific	bias	towards	certain	outcomes.	Generative	art	requires	that	the	artist	
be	able	to	express	herself	through	the	manipulation	of	these	systems,	choosing	computational	strategies	
and	appropriate	parameters	in	a	combination	of	technical	skill	and	aesthetic	intuition.

void loop();
In	popular	discussion	of	generative	art	two	aspects	are	often	forgotten:	Firstly,	that	it	does	not	in	fact	
constitute	an	art	movement	as	such.	Rather	it	describes	a	strategy	for	the	invention	of	works	that	share	a	
certain	methodology,	but	which	may	present	themselves	in	myriad	ways.	Secondly,	the	aesthetic	applica-
tion	of	rules	comes	with	a	wealth	of	historical	precedents,	dating	back	as	far	as	humans	have	been	known	
to	employ	scientific	principles.	The	fascination	with	systems	has	been	a	constant	of	human	culture,	from	
early	astrology	to	the	mechanical	automata	of	medieval	times.	These	observations	are	important	because	
they	point	to	a	weakness	in	the	current	discourse	while	simultaneously	providing	a	possible	solution.	By	
looking	at	how	generative	art	differs	from	classic	media	art,	a	clearer	understanding	might	emerge.
	 The	current	popularity	of	generative	art	can	be	traced	historically	to	several	factors:	The	introduction	
of	personal	home	computers	in	the	late	1970’s	with	their	easily	accessible	programming	languages	like	
BASIC	and	LOGO	provided	many	artists	with	their	first	taste	of	computation.	Later,	the	near-complete	
invasion	of	creative	production	by	digital	tools	from	the	early	1990’s	onwards	meant	that	the	transition	
from	simple	tool	use	to	exploring	code	as	material	became	a	logical	next	step.	Ironically,	it	was	the	intro-
duction	of	relatively	primitive	code	frameworks	like	HTML,	JavaScript	and	Flash	that	jump-started	the	
interest	in	code-based	aesthetics.	
	 These	technological	developments,	coupled	with	the	World	Wide	Web	as	a	sandbox	for	personal	ex-
pression,	produced	an	explosion	of	web	sites	in	the	late	1990’s,	quickly	becoming	an	international	subcul-
ture	for	digital	media	experimentation.	Coinciding	with	(but	conceptually	separated	from)	the	rise	of	net.
art,	a	particular	subsection	of	these	sites	concerned	themselves	with	software	abstractions.	Ranging	from	
simple	interactive	soundtoys	to	more	complex	generative	compositions,	these	early	experiments	should	
be	considered	the	direct	predecessors	of	today’s	generative	art	scene.	
	 While	much	of	the	early	work	of	the	1990’s	was	naive	both	conceptually	and	aesthetically,	it	did	
establish	an	important	distinction	from	the	interactive	artworks	that	dominated	the	media	art	scene	at	
the	time.	Interactive	art	exploits	the	feedback	loop	of	interaction	between	a	system	and	its	user(s),	with	
custom	software	systems	generally	considered	a	necessary	evil	rather	than	an	end	in	itself.	Generative	art	
is	primarily	interested	in	closed	system,	self-contained	constructs	investigated	for	their	formal	and	mate-
rial	qualities.	This	might	seem	like	a	trivial	difference,	but	it	places	the	concerns	of	generative	art	closer	to	
traditions	of	drawing	or	painting	than	to	the	relational	aesthetics	so	common	in	the	media	art	field.
	 From	the	more	traditional	art	world	obvious	connections	can	be	made	between	generative	art	and	
movements	like	Conceptual	Art,	Minimalism	and	Op	Art,	both	in	terms	of	formal	and	conceptual	similari-
ties.	Sol	Lewitt’s	use	of	terse	text	instructions	as	the	means	of	describing	his	famous	wall	drawings	has	
become	something	of	a	golden	standard	,	an	art	historical	reference	providing	generative	art	with	main-
stream	legitimacy	beyond	comparisons	to	screensavers	and	audio	visualizers.	Similarly,	the	strictness	
of	Minimalism	with	its	elimination	of	subjective	gesture	is	inevitably	appealing	to	the	computationally	
minded.
	 A	direct	link	is	found	in	the	work	of	early	computer	art	pioneers	like	Charles	Csuri,	Manfred	Mohr,	Vera	
Molnar	or	Frieder	Nake.	Created	in	the	hey-day	of	Minimalism	and	Op	Art,	their	explorations	of	para-
metric	processes	predates	the	current	scene	by	more	than	30	years.	Along	with	a	larger	group	of	artists	
experimenting	with	computer	code	they	laid	out	a	conceptual	groundwork	that	was	sadly	semi-forgotten	
and	ignored	by	media	art	discourse,	until	its	“rediscovery”	in	recent	years.	Generally	created	before	the	
advent	of	interactive	screens	and	mostly	realized	using	plotter	hardware,	artworks	from	this	era	mirror	
the	ideas	popular	in	painting	of	the	time.
	 These	pre-existing	art	movements	certainly	provide	part	of	the	conceptual	framework	for	code-based	
work	being	created	now.	But	to	get	the	full	picture	one	must	address	the	radically	different	cultural	
context	of	the	current	scene	to	that	of	the	late	1960’s.	The	utopian	world	view	of	Modernism	has	been	
fragmented	by	Postmodernism	and	complexity	theory,	undermining	the	straight-forward	world	view	of	

reductionist	science	with	quantum	uncertainty	and	emergent	phenomena.	On	a	technical	level,	early	
computer	systems	exhibited	only	a	fraction	of	the	complexity	of	today’s	technological	infrastructure,	
which	goes	beyond	the	individual	computer	to	encompass	an	interconnected	world	of	networks	and	
public	APIs.	A	flourishing	Open	Source	scene	now	supports	artistic	endeavour,	serving	up	tools	and	code	
examples	to	accomplish	all	sorts	of	computational	miracles.	
	 Developments	in	electronic	music	have	provided	us	with	new	compositional	ideas	such	as	sampling,	
glitch	and	microbeats,	as	well	as	a	renewed	desire	for	synaesthetic	experiences.	Concepts	like	live	cinema	
and	media	facades	are	closely	linked	to	generative	art,	as	are	other	fields	such	as	information	visualiza-
tion	and	computational	architecture.	Only	by	considering	all	these	developments	along	with	the	historical	
precedents	can	one	glean	an	understanding	of	the	concerns	at	hand.

void reboot();
I	would	like	to	propose	that	we	are	currently	at	a	crossroads	in	the	field	of	generative	art.	Code-based	art-
works	have	reached	a	level	of	maturity,	going	beyond	simple	visual	experimentation	to	expressing	more	
complex	visions.	Artists	like	Lab[au]	use	software	processes	as	an	integral	part	of	their	work,	formulating	
an	artistic	project	based	on	the	material	qualities	of	computation.	Throughout	their	various	projects	one	
can	trace	the	merging	of	architectural	concepts	of	space	with	code	structures.	
	 The	“chronos”	series	takes	a	simple	mapping	of	time	to	color	as	its	starting	point,	following	its	logic	
to	provide	a	visualization	of	temporal	space.	The	generative	art	consoles	Lab[au]	have	developed	are	
simultaneously	beautiful	objects	and	an	extendible	delivery	platform	for	software	artworks.	But	perhaps	
their	most	complex	achievements	lie	in	projects	like	“5x5x5”,	where	generative	principles	are	manifested	
in	physical	form,	escaping	the	screen	altogether.
	 This	move	beyond	projections	and	the	screen	as	mediating	surfaces	is	one	of	the	more	exciting	recent	
devel	opments	in	computational	systems.	The	use	of	digital	fabrication	technology	to	literally	extrude	
virtual	objects	into	physical	space	challenges	the	screen	as	a	default	output	device,	providing	the	means	
for	an	algorithmic	conception	of	space.	Already	we	are	seeing	architects	using	scripting	in	CAD	software	
to	design	parametric	structures	that	can	respond	to	environmental	input.	Meanwhile,	artists	are	experi-
menting	with	“data	sculptures”,	representing	normally	intangible	information	flows	as	physical	manifes-
tations.
	 While	generative	art	is	inextricably	linked	to	the	computer	as	a	means	of	production,	the	work	is	not	
about	the	computer	itself.	While	screen-based	work	and	the	investigation	of	realtime	self-contained	
systems	remain	an	important	aspect	of	generative	art,	it	would	be	a	mistake	to	think	generative	work	is	
primarily	expressed	in	pixels.	I	for	one	look	forward	to	an	extended	rethinking	of	computational	aesthet-
ics	that	encompasses	a	much	wider	range	of	possible	outputs.

Marius Watz, May 2010
http://mariuswatz.com

http://mariuswatz.com

